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ACTIVE COMBUSTION CONTROL FOR AIRCRAFT GAS TURBINE ENGINES

John C. DeLaat, Kevin J. Breisacher, Joseph R. Saus, Daniel E. Paxson
NASA Glenn Research Center at Lewis Field

21000 Brookpark Road
Cleveland, Ohio  44135

Abstract

Lean-burning combustors are susceptible to
combustion instabilities.  Additionally, due to non-
uniformities in the fuel-air mixing and in the
combustion process, there typically exist hot areas in
the combustor exit plane.  These hot areas limit the
operating temperature at the turbine inlet and thus
constrain performance and efficiency.  Finally, it is
necessary to optimize the fuel-air ratio and flame
temperature throughout the combustor to minimize the
production of  pollutants.  In recent years, there has
been considerable activity addressing Active
Combustion Control.  NASA Glenn Research Center’s
Active Combustion Control Technology effort aims to
demonstrate active control in a realistic environment
relevant to aircraft engines.  Analysis and experiments
are tied to aircraft gas turbine combustors.
Considerable progress has been shown in demonstrating
technologies for Combustion Instability Control,
Pattern Factor Control, and Emissions Minimizing
Control.  Future plans are to advance the maturity of
active combustion control technology to eventual
demonstration in an engine environment.

Introduction

Future aircraft engines must provide ultra-low
emissions and high efficiency at low cost while
maintaining the reliability and operability of present
day engines.  The demands for increased performance
and decreased emissions have resulted in advanced
combustor designs that are critically dependent on
effective fuel-air mixing and lean operation.  However,
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lean-burning low-emissions combustors are particularly
susceptible to combustion instabilities.  These
instabilities are typically caused by the interaction of
the fluctuating heat release of the combustion process
with naturally occurring acoustic resonances.1  These
interactions can produce large pressure oscillations
within the combustor and can reduce component life
and potentially lead to premature mechanical failures.

Additionally, due to non-uniformities in the fuel-
air mixing and in the combustion process, there
typically exist hot areas in the combustor exit plane
entering the turbine.  These hot streaks limit the
operating temperature at the turbine inlet and thus
constrain performance and efficiency.  In addition,
these hot streaks can be zones of increased formation of
oxides of nitrogen (NOx).  The non-uniformities in
combustor exit temperature are described by a
parameter called pattern factor.  Elimination of the hot
streaks, that is, a reduction in pattern factor, can provide
greater turbine life, can effectively increase the
maximum combustor operating temperature and thus
increase engine efficiency and performance, and can
also contribute to emissions reduction.

Finally, the combustor flame temperature is
largely a function of the combustion zone fuel-air
mixture ratio.  In order to minimize the formation of
carbon monoxide (CO) and unburned hydrocarbons
(UHC’s), it is desirable to maintain a mixture ratio near
stoichiometric.  Unfortunately, mixture ratios near
stoichiometric give high flame temperatures that lead to
increased NOx formation.  In order to minimize CO,
UHC, and NOx production, tight control over the fuel-
air ratio is required.

Advanced design and analysis tools such as the
National Combustion Code2,3 and physics-based
combustion dynamics models4,5,6 can guide the design
and development process for modern low-emissions,
high-performance gas turbine combustors.  However,
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dynamic modeling is not as mature as steady-state CFD
modeling.  This limits the use of dynamic models
during the design phase.  As a result, passive
approaches to dealing with combustor dynamic
problems are often applied late in the combustor
development process.  This tends to be expensive.
Active Combustion Control (ACC), which provides
feedback-based control of the fuel injection, the fuel-air
mixing process, and the staging of fuel sources, can
provide an alternative approach to achieving acceptable
combustor dynamic behavior, and thus can provide
flexibility (additional margin) during the combustor
design process.

In recent years, there has been considerable
activity addressing ACC.  Government, academia, and
industry research efforts, through analysis and the use
of laboratory combustors, have shown the considerable
potential for active control.7,8,9,10,11,12,13  The NASA
Glenn ACC Technology effort aims to demonstrate
active control in a realistic environment relevant to
aircraft engines by providing experiments tied to
aircraft gas turbine combustors.  The intent is to allow
the maturity of active combustion control technology to
advance to eventual demonstration in an engine
environment.

NASA Glenn’s effort in ACC includes three
related efforts:  Combustion Instability Control, Burner
Pattern Factor Control, and Emission Minimizing
Control.   Each of these efforts is described in this
paper.  Significant results are given as well as
references to where more detailed results can be found.
Finally,  the remaining challenges to ACC are given
along with recommendations for future work.

Combustion Instability Dynamics and Control

Combustion instabilities are usually the result of
interactions between the combustion process and the
acoustic fields within the combustor.  In-phase coupling
of the heat addition and combustor acoustics can result
in self-excited thermo-acoustic instabilities (Figure 1).

The control measures taken in order to damp or
eliminate these instabilities include passive and active
techniques.1,14  Passive control techniques include
hardware and design modifications that do not have a
dynamic component.   Examples of passive techniques
include modifications to the fuel delivery system and/or
the combustor hardware in order to reduce the variation
in the heat release process or increase acoustic
damping.  Active control techniques depend on a
dynamic or time-varying hardware component
(actuator).  Typically, the intent of an active

combustion instability control approach is to perturb the
combustion process in a fashion that disrupts the
coupling between the combustion process and the
combustor acoustics (see Fig. 1).  The approach most
often considered for aircraft gas turbine engines is
dynamic modulation of the fuel flow since it has the
most direct influence.

Combustion Dynamic Modeling

Stability Analysis Models It is not currently
possible to predict a priori the stability of a gas turbine
combustor.  This inability is due largely to
computational and physical modeling limitations.  The
computational requirements to compute a sufficiently
long time history (hundreds of acoustic wave cycles)
with a 3D (for tangential modes) multi-nozzle engine
geometry over the operational envelope of the engine
remains beyond the capabilities of most institutions.
The physical modeling limitations are due to the wide
variety of physical mechanisms that can lead to
instabilities, and to the intractability of two phenomena
of particular importance: 1) the evolution of vortical
structures in a combusting, acoustically active
environment; and 2) the dynamics of the two-phase fuel
flow.

For the foreseeable  future, stability analysis will
have to rely on codes of varying fidelity and
computational requirements.  One and two dimensional
time domain and three dimensional acoustic codes
(particularly when energy release models are anchored
with flametube data) can be used to identify regions of
low stability margin in the operating envelope. AYT
Corp. and NASA Glenn are using a 2D “thin-annular”
code4 anchored with flametube data to make predictions
of the stability characteristics of  upcoming full scale
low emissions combustor  sector tests.

Combustor 
Acoustics

Combustion
Process

SensorControllerActuator

+
+

Closed-Loop Self-Excited System

Figure 1 – Combustion Thermo-Acoustic
Instability with Active control
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 Multi-dimensional  CFD codes can  be used to
model problem areas with a fidelity that the lower
dimensional models lack.  NASA Glenn has a grant
with Pennsylvania State University to use Large Eddy
Simulation (LES) techniques to develop a fuel nozzle
response model to calculate nozzle resonances.6 The
resulting nozzle response information can be utilized
along with less detailed calculations of the frequency
response of other combustor sub-components to ensure
that there are no matches in sub-component resonances.
The fuel injector that Penn State is analyzing in this
effort is the same engine injector being used for the
Empirical Combustion Instability Control effort
described later in this paper.

Control Development Models  A significant
amount of combustor dynamic modeling will most
likely be required to implement active control schemes
on practical systems. The one- and two- dimensional
time domain codes will play an important role in
assessing the feasibility of various control schemes.

Simplified, 1-D, Quasi-1-D, and Sectored-1-D
combustor dynamic models15 are being developed by
NASA Glenn to aid control system development and
testing.  These approaches utilize the one-dimensional
(or quasi-one-dimensional), Navier-Stokes equations as
their basis.  In addition to mass, momentum, and energy
equations, there are also one or more species transport
equations.  Associated with these are relatively simple
reaction and heat release equations.  The governing
equations of motion are solved numerically using a very
simple, second-order MacCormack scheme.  Artificial
viscosity is added in order to damp non-physical
oscillations in vicinities of strong spatial gradients such
as those brought about by the combustion process.  The
numerical scheme and associated artificial viscosity
were chosen because of the computational speed which
they afford.

If the combustor geometry is such that there are
abrupt changes in cross section, a sectored approach is
used.  Here, the combustor is approximated by dividing
it into a finite number of one-dimensional (constant
area) sectors as shown in Figure 2.  Within each sector,
the equations of motion and species transport are
integrated numerically.  Across the sectors, mass and
energy are conserved, and momentum loss is prescribed
using appropriately compatible boundary conditions
that account for the area change.

The resulting simulation and associated boundary
conditions essentially represent a one-dimensional,
multi-block technique.  This approach has been used to
successfully reproduce self-excited instabilities that
have been observed in several experimental rigs.

Figure 3 shows the geometrical layout of one
such experiment that was simulated using the sectored-
one-dimensional approach.  This is a lean, premix-
prevaporize (LPP) combustor design that exhibited
instabilities at certain operating points.  When the
simulation was run under the same conditions, self-
excited, unstable operation commenced, and eventually
reached limit cycle behavior.  The computed peak-to-
peak amplitude of the pressure fluctuations at the
location of a pressure transducer was approximately
7.7% of the mean.  This is close to the 8% value
measured experimentally.  Contour plots of non-
dimensional pressure and velocity fluctuations
(deviations from the time-mean values) are presented in
Figure 4 for approximately 2 oscillatory cycles.  These
are presented in order to show the mode shape of the
instability.  It would appear that this limit cycle is
primarily the quarter wave mode of the combustor
section proper.

Sector 1
Sector 2

Sector 3

Injector Region

Combustor Region

Figure 2 -  Lean Premix Combustor Schematic
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Measured and computed Power Spectral Density
distributions (PSD) of pressure at the experimental
transducer location are presented in Figure 5.  Critical
similarities are the frequency and power density
associated with the instability. For reference, the
measured dominant frequency was 275 Hz.  The
computed value was 291 Hz.  Although differing
significantly in magnitude, the presence of higher
frequency modes can also be seen at approximately 570
and 850 Hz. in both the computed and measured
spectra.  This suggests that the subtle acoustic
properties of the rig are reasonably reproduced in the
simulation.

The sectored-one-dimensional, numerical,
reacting flow solver technique is relatively simple and
fast.  The combustor rig simulation just described took
188 seconds of CPU time to simulate 0.116 seconds of
real time running on a Sun Ultra 2 Workstation.  Yet

the technique is also reasonably accurate.  These
features make it useful for characterization and testing
of control strategies.  Furthermore, modeling and
implementation of control actuation, such as fuel flow
perturbations, are straightforward in the 1-D CFD
framework.  Further details on the approach are given
in Ref. 15.

The 2-D “thin annular” codes mentioned earlier4

may play an important role in analyzing nozzle-to-
nozzle interaction for both passive and active
approaches to controlling tangential mode instabilities.
AYT Corporation, NASA Glenn and the Department of
Energy have begun a collaboration to address these
issues.

Combustion Instability Control

The lack of detailed combustor dynamic models
makes a rigorous control development methodology (an
exact reasoning approach) difficult to pursue.  On the
other hand, control development methods that primarily
treat the combustor as an input/output relationship (an
approximate reasoning approach) may be feasible, but
may be unable to take into account some of the
important dynamic relationships in the combustor
physics.

To address this spectrum of potential control
approaches, the NASA Combustion Instability Control
element has efforts covering three different control
development methods.  First, research into neural-
network-based control is being conducted using a
relatively complex lean premix-prevaporize (LPP)
combustor rig in order to demonstrate a near-term
approximate reasoning approach.  Second, as a
medium-term, more exact reasoning approach, an
empirical control development method using non-linear
system identification and control techniques is being
pursued for a single-nozzle combustor rig with many
real combustor features.  And third, research is being
conducted for physics-based control approaches using a
simple, tube-type laboratory combustor in order to
allow the eventual demonstration of an exact reasoning
approach on a more real combustor.

Neural Combustion Instability Control  The
neural-network-based control approach is seeking to
develop a neural controller capable of adequately
attenuating thermo-acoustic instabilities observed in an
LPP combustor flame-tube.  The control action is to
occur through the modulation of the primary fuel
supply to the combustor.  Figure 6 shows the block
diagram for the neural controller approach.  The “plant”
actually consists of three parts: the combustor, the fuel
actuation dynamics, and the sensor dynamics.  The

Figure 4 - Contours of Non-dimensional Pressure
and Velocity Fluctuations for 2 Cycles of the Limit
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neural identifier learns the dynamics of the plant and
provides the desired output value for the neural
controller. The neural identifier and neural controller
networks are both of a Bama Optimized Recurrent
Neural Network (BORN) type.16

Initially, the neural control approach is being
developed through software simulation.  The quasi-1-D
model of an LPP combustor discussed earlier is being
used to train the networks and will serve as a way to
measure the neural controller’s performance.  The
model will be run at five different operating points
between low and full power, with an input signal, u,
that spans prescribed ranges of frequency and
amplitude.  This input and the pressure output from the
plant, P, will be recorded in a data file. Half of this data
will be used to train the neural identifier off-line; the
other half will be used for its testing.

  Once trained, the neural identifier replaces the
plant during training of the neural controller.  The
neural identifier pressure output is compared to a priori
background pressure measurements (i.e., measurements
taken when no combustion is taking place).  The
difference is backpropagated through the input layer of
the neural identifier to determine what the input should
have been in order to minimize the error.  This ideal
input is the desired value for the output of the neural
controller. The error between the desired and the
controller’s actual output is then used in a conventional
backpropagation sense to train the neural controller.

Once proof of concept has been demonstrated in a
simulation environment, NASA plans to implement the
trained controller in real time and demonstrate the

neural control with a NASA-owned LPP flame-tube
combustor rig.

Empirical Combustion Instability Control  The
goal of the empirical combustion instability control
effort is to develop a control for a realistic combustion
instability.  The approach consists of developing a
combustor rig which replicates an engine combustion
instability, conducting system identification in order to
develop reduced-order models of the rig, and then using
the reduced-order models for control development.  The
sample problem selected for this effort is a combustion
instability that was observed during the development of
a high-performance aircraft gas-turbine engine.  The
frequency of the observed instability at a mid-power
operating condition was 525Hz, and the magnitude of
the pressure oscillations was sufficient to cause
unacceptable vibratory stresses in the turbine.

The empirical combustion instability control
effort has designed, fabricated, and tested an engine-
scale, liquid-fueled single-nozzle research combustor
rig.  The rig successfully replicates the engine
instability and operates at engine pressure and
temperature conditions.  The single-nozzle combustor
rig has many of the complexities of a real engine
combustor including an actual engine fuel nozzle and
swirler, dilution cooling, and an effusion-cooled liner
(Figure 7).  The research combustor rig was developed
in partnership with Pratt & Whitney and United
Technologies Research Center (UTRC).  Experimental
testing with the combustor rig is taking place at UTRC.

DelayDelay

NeuralNeural
ControllerController PlantPlant P(t)P(t)u(t)u(t)

NeuralNeural
IdentifierIdentifier

DelayDelay

DelayDelay
--

++
EEii(t)(t)

EEtt(t)(t)

PPii(t)(t)

P(t-n)P(t-n)

u(t-n)u(t-n)

u(t-n)u(t-n)

++
--

PP00(t)(t)EEcc(t)(t)

Figure 6 – Neural Combustion Instability
Control Approach

Figure 7 - Combustor Rig for Empirical
Combustion Instability Control Research

(Photograph by United Technologies Research Center)
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The single-nozzle combustor rig was operated in
the baseline configuration shown in Figure 8 at
pressures, temperatures, and fuel-air ratios
corresponding to three different engine operating
conditions.  For the conditions corresponding to the
mid-power condition chosen for evaluation (T3=770ºF,
P3=200psia, fuel-air ratio=0.03), test results established
the existence of a combustion instability at
approximately 566 Hz.  The measured pressure
spectrum inside the combustor at a location
approximately 2 inches downstream of the fuel injector
is shown in Figure 9.  Pressure measurements at
different axial locations and at the equivalent axial
station but different circumferential locations showed
this to be a longitudinal acoustic mode.  This mode was
also observed at the other two operating conditions,
although at smaller amplitude and slightly lower
frequencies.

A comparison between the pressure spectrum in
the engine and in the single-nozzle combustor rig at
comparable operating conditions is shown in Figure 10.
The combustor rig approximates the frequency and
amplitude of the engine instability.  However, the
engine provides a narrower, more coherent frequency
peak, and the rig exhibited a higher overall level of
noise.17

Overall, the single-nozzle rig provides a suitable
test environment for combustion instability control
research.  A second phase of the empirical control effort
has been initiated to develop a controller to suppress the
observed combustion instability.  Non-linear system
identification and analytical models are guiding the
development of reduced-order models of the research
combustor.  The reduced-order models will be used to
develop control laws for experimental demonstration on
the combustor rig.
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Figure 8 – Empirical Combustion Instability Control Rig Baseline Configuration
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Figure 9 – Measured pressure spectrum of unsteady
combustion pressure for the single nozzle combustor rig

in the baseline configuration.
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In addition to the baseline rig configuration shown
in Figure 8, the combustor rig configuration was also
changed to an extended configuration that placed the
two 9.72 inch spool pieces between the pre-diffuser and
the fuel injector.  This extended configuration, when
operated at the same mid-power evaluation condition as
the baseline configuration, showed a dramatically
different instability frequency (273 Hz) and magnitude
(Figure 11).  Higher order harmonics are evident, and
the peaks here are narrow and coherent as compared
with the results for the baseline configuration.18

The extended configuration also showed a certain
“tune-ability”, that is, the amplitude and the frequency
of the instability varied considerably with operating
condition and fuel-air ratio (Figure 12).  This tendency
to produce an instability of varying amplitude and
frequency over a wide range of conditions seems to
indicate that the extended configuration has the
potential for producing instabilities for other
nozzle/combustor configurations.

Physics-Based Combustion Instability Control
The final activity in Combustion Instability Control
utilizes an integrated systems approach toward physics-
based combustion control.  Under a grant with Virginia
Tech, methods are being investigated for increasing the
physical understanding of combustion instabilities as
they pertain to theoretical and test-based system models
amenable to control.  The end-goal of the effort is to
develop more effective control strategies for
combustion instability suppression.19,20  CFD and
experimental studies have been conducted to support
detailed analyses of the various physical mechanisms
(fluid mechanics, chemical kinetics, acoustics, and heat

transfer) that underlie the inter-related phenomena
observed during the occurrence of combustion
instabilities.  The roles of these various mechanisms
have been studied for a simple laboratory tube
combustor, which has been nonetheless a challenge to
accurate theoretical, physics-based modeling efforts.
This research has resulted in detailed characterization
of: the laminar flame's dynamic response to acoustic
perturbations, the interaction of thermo-diffusive and
thermo-acoustic instabilities, and first-generation
nonlinear models that can be used to estimate the
frequency and amplitude of limit cycling behavior
observed in the tube combustor.

The Virginia Tech research is also leading to
better insight about techniques that produce reliable
control of combustion instabilities.21,22  For example,
this part of the effort recently provided analytical and
experimental results that illustrate specific requirements
for robust use of the least mean squares (LMS) adaptive
signal processing algorithm in suppressing
instabilities.23  The precise role of the system
identification task required for compensation of the
feedback in the reference signal has now been clearly
shown and a robust implementation of the LMS
controller has been demonstrated in simulation and
experiments conducted on the tube combustor (Figure
13).23  Future work will address the use of adaptive
control techniques on a dump combustor.
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Figure 11 – Measured pressure spectrum of unsteady
combustion pressure for the single-nozzle rig in the

extended configuration
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Burner Pattern Factor Control

The Burner Pattern Factor Control element seeks
to develop an active engine fuel distribution system
capable of producing a more uniform combustor exit
temperature. The Active Pattern Factor Control (APFC)
system architecture is shown in Figure 14.  The APFC
works in series with the primary fuel supply system.
The fuel control system delivers the required total
combustor fuel flow. Based on temperature feedback
from circumferentially arranged temperature sensors at
the combustor exit plane, the APFC issues commands
to fuel flow modulators (valves) circumferentially
arranged inside the combustor. The command signals
dictate how these valves are to distribute the total fuel
inside the combustor so as to achieve as uniform a
temperature distribution at the exit plane as possible.

The pattern factor control work was performed by
Honeywell Engines and Systems (formerly
AlliedSignal Engines) under the NASA Advanced
Subsonic Technology (AST) Program.

The highest risk element in this work was the
development of thin film temperature sensors. A major
effort was expended to develop thin-film type-S
thermocouples that could be affixed to the backside
surface of the turbine inlet stator vanes to provide the
temperature feedback information needed by the APFC.
A number of fabrication methods were investigated for
the thin-film thermocouples and durability testing of the
resulting thermocouples was conducted on base

material prior to fabrication onto the turbine stators.
Research was also conducted into determining a
suitable method for affixing the sensors to the stators.24

The stator ring to be used in the rig tests was cut into 19
sectors (two vanes per sector) to fit into the
thermocouple fabrication facility.  A thin film sensor
was then affixed to each of the 38 vanes. Figure 15
shows a photograph of an  instrumented stator.

Specifications for the fuel flow modulators were
determined and several candidates were examined. A
downselect was made to use a Sturman Industries
magnetically-latched solenoid valve typically used for
small automotive diesel engines. The valve consists of a
high-speed, pressure balanced spool and a hermetically
sealed magnetic circuit. Residual magnetism provides a
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Figure 13 - Experimental data for a Rijke tube
combustor operating at an equivalence ratio of
about 0.51 and a total flow rate of 120 cc/sec.
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Figure 15 - Thin-film thermocouple attached to
a turbine stator vane

(Photograph by Honeywell Engines and Systems)

NASA/TM—2000-210346



9
American Institute of Aeronautics and Astronautics

small holding or latching force that requires a brief,
high current to switch but low current to hold in
position. Simulation studies and hardware tests of the
valves confirmed that the fuel distribution could be
varied using pulse-width-modulation in response to
sensed changes in exit temperature distribution. Bench
testing revealed that a single valve influenced
approximately a 20º sector of the exit plane temperature
profile, requiring a minimum of 18 circumferentially
distributed valves.  To provide a slight overlap, 19
valves were used.

Several control algorithms were evaluated for
performing the APFC. From simulation evaluations it
was decided to further investigate the performance of
both a Proportional-Integral-Derivative (PID) and a
fuzzy logic controller.

Two series of rig tests were performed.  In the
first series a significant number of the thin film sensors
were damaged and the data collected were deemed
questionable.  Inspection of the sensors after the testing
revealed lead wire splice failure as the primary failure
mechanism.  There was also some delamination of the
thermocouple material.  Valuable experience (in the
form of lessons learned) was gained for furthering the
development of this technology area.

In the second series of tests, the thin film sensors
were replaced with conventional platinum-rhodium
thermocouples.  Two rig operating conditions (idle and

medium power) were examined. Baseline
measurements were taken without APFC for both of
these conditions.  For this effort, the pattern factor, PF,
is defined as:

1−=
Avg

Peak

T

T
PF

where TPeak is the measured peak temperature at the
combustor exit plane and TAvg is the average measured
temperature.

Preliminary testing showed the potential for
pattern factor reduction with both the PID and fuzzy
logic control techniques.  For the idle condition,
(T3=344ºF, P3=48psia) the PID controller was
successful in achieving a 47% reduction in pattern
factor and a 7.3% reduction in NOx.  It did, however,
cause a 1.1% increase in CO and a 1.8% increase in
UHC.  The Fuzzy Logic controller achieved a 51.9%
reduction in pattern factor and a 4.5% reduction in
NOx; it caused an increase in CO of 1.0% and an
increase in UHC of 1.3%.  For the medium power
condition, (T3=707ºF, P3=145psia) the PID controller
achieved a 30.8% reduction in pattern factor with a
1.4% reduction in NOx, a 0.04% reduction in CO, and a
0.2% reduction in UHC. The Fuzzy Logic controller
achieved a 42.5% reduction in pattern factor, a 1.3%
reduction in NOx, a 0.08% increase in CO, and a 0.62%
increase in UHC. APFC data for the PID and Fuzzy
controllers is shown in Figure 16.
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Emission Minimizing Control

The Emission Minimizing Control effort seeks to
minimize emissions through active feedback control of
fuel-air ratio.  Combustors often incorporate fuel
staging, that is, sequencing of the fuel injection through
one or more local injection zones, in order to tailor the
fuel-air mixture ratio over a large engine operating
(airflow) range.  Increased levels of staging allow
increased resolution in the fuel-air mixture ratio.
However, increased levels of staging also require
increased valving to accomplish the staging.

Under the NASA AST Program, General Electric
developed an intelligent fuel staging concept which
includes a Control Pressure Fuel Nozzle (CPFN) along
with model-based staging control.  The CPFN provides
a single pressure-driven linear actuator with multiple
ports at each fuel injection station to selectively provide
fuel to one or more fuel injection points.   The model-
based staging control uses sensed combustor inlet
pressure and temperature along with a calculated
compressor airflow to estimate the emissions formation
in order to determine when to sequence the injection
points.  The CPFN and model-based staging control
have been successfully demonstrated on the GE control
system test rig.  This rig incorporates actual control
system hardware with a simulated engine.  Also  under
the NASA AST Program, GE developed a fuel
multiplexer (FMUX) for more advanced engines
incorporating even more levels of staging than would
be practically supportable by the CPFN.  The FMUX
incorporates a rotating slotted cylinder to control the
fuel to multiple injection locations.  The FMUX has
been fuel flow bench tested but has not been tested on
the control system test rig.

Concluding Remarks

Early results from the NASA Glenn Research
Center’s Active Combustion Control Technology effort
demonstrate the promise of active combustion control
for aircraft gas turbine engines.  The NASA Glenn
effort is being conducted in partnership with academia
and industry.  Emphasis has been placed on engine
relevance through experiments and analysis tied to
aircraft gas turbine engine combustors.  NASA Glenn’s
effort includes Combustion Instability Control, Burner
Pattern Factor Control, and Emission Minimizing
Control.

There are a number of technical challenges that
must continue to be addressed in order for Active
Combustion Control to become a reality for aircraft gas
turbine engines.  Temperature, emissions, and pressure
sensors that can exist in the harsh environment in or

near the combustor are needed as feedback devices for
the controller.   Highly-distributed fuel actuation,
potentially employing micro-valving, is needed for
precisely controlling fuel distribution.  Fast, full
authority fuel valves are needed for instability
suppression.  Accurate physics-based models of
combustor dynamics continue to be required to guide
the development of passive and active instability
suppression methods.  Simplified dynamic models are
needed for controls development.  And control methods
are needed which provide or enhance the capabilities of
combustors to achieve high performance and low
emissions while maintaining full-envelope stability and
operability margins.

The challenges to Combustion Instability Control,
Burner Pattern Factor Control, and Emission
Minimizing Control are being addressed in a somewhat
synergistic fashion in the current NASA Glenn effort.
However, in the future it is likely that a more closely
coupled effort would result in a more efficient solution.
NASA Glenn’s long range vision is for the systems to
implement instability control, pattern factor control, and
emissions control be combined into a smart, fast,
highly-distributed fuel-air management system.  This
would provide maximum flexibility to the designers of
future combustors as they strive to meet the ever
increasing performance and emissions demands placed
on future engine systems.
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